22 research outputs found

    Early Vision Optimization: Parametric Models, Parallelization and Curvature

    Get PDF
    Early vision is the process occurring before any semantic interpretation of an image takes place. Motion estimation, object segmentation and detection are all parts of early vision, but recognition is not. Many of these tasks are formulated as optimization problems and one of the key factors for the success of recent methods is that they seek to compute globally optimal solutions. This thesis is concerned with improving the efficiency and extending the applicability of the current state of the art. This is achieved by introducing new methods of computing solutions to image segmentation and other problems of early vision. The first part studies parametric problems where model parameters are estimated in addition to an image segmentation. For a small number of parameters these problems can still be solved optimally. In the second part the focus is shifted toward curvature regularization, i.e. when the commonly used length and area regularization is replaced by curvature in two and three dimensions. These problems can be discretized over a mesh and special attention is given to the mesh geometry. Specifically, hexagonal meshes are compared to square ones and a method for generating adaptive methods is introduced and evaluated. The framework is then extended to curvature regularization of surfaces. Thirdly, fast methods for finding minimal graph cuts and solving related problems on modern parallel hardware are developed and extensively evaluated. Finally, the thesis is concluded with two applications to early vision problems: heart segmentation and image registration

    Discrete Optimization in Early Vision - Model Tractability Versus Fidelity

    Get PDF
    Early vision is the process occurring before any semantic interpretation of an image takes place. Motion estimation, object segmentation and detection are all parts of early vision, but recognition is not. Some models in early vision are easy to perform inference with---they are tractable. Others describe the reality well---they have high fidelity. This thesis improves the tractability-fidelity trade-off of the current state of the art by introducing new discrete methods for image segmentation and other problems of early vision. The first part studies pseudo-boolean optimization, both from a theoretical perspective as well as a practical one by introducing new algorithms. The main result is the generalization of the roof duality concept to polynomials of higher degree than two. Another focus is parallelization; discrete optimization methods for multi-core processors, computer clusters, and graphical processing units are presented. Remaining in an image segmentation context, the second part studies parametric problems where a set of model parameters and a segmentation are estimated simultaneously. For a small number of parameters these problems can still be optimally solved. One application is an optimal method for solving the two-phase Mumford-Shah functional. The third part shifts the focus to curvature regularization---where the commonly used length and area penalization is replaced by curvature in two and three dimensions. These problems can be discretized over a mesh and special attention is given to the mesh geometry. Specifically, hexagonal meshes in the plane are compared to square ones and a method for generating adaptive meshes is introduced and evaluated. The framework is then extended to curvature regularization of surfaces. Finally, the thesis is concluded by three applications to early vision problems: cardiac MRI segmentation, image registration, and cell classification

    Parallel and Distributed Graph Cuts

    Get PDF
    Graph cuts methods are at the core of many state-of-the-art algorithms in computer vision due to their efficiency in computing globally optimal solutions. In this paper, we solve the maximum flow/minimum cut problem in parallel by splitting the graph into multiple parts and hence, further increase the computational efficacy of graph cuts. Optimality of the solution is guaranteed by dual decomposition, or more specifically, the solutions to the subproblems are constrained to be equal on the overlap with dual variables. We demonstrate that our approach both allows (i) faster processing on multi-core computers and (ii) the capability to handle larger problems by splitting the graph across multiple computers on a distributed network. Even though our approach does not give a theoretical guarantee of speedup, an extensive empirical evaluation on several applications with many different data sets consistently shows good performance

    Generalized roof duality

    Get PDF
    AbstractThe roof dual bound for quadratic unconstrained binary optimization is the basis for several methods for efficiently computing the solution to many hard combinatorial problems. It works by constructing the tightest possible lower-bounding submodular function, and instead of minimizing the original objective function, the relaxation is minimized. However, for higher-order problems the technique has been less successful. A standard technique is to first reduce the problem into a quadratic one by introducing auxiliary variables and then apply the quadratic roof dual bound, but this may lead to loose bounds.We generalize the roof duality technique to higher-order optimization problems. Similarly to the quadratic case, optimal relaxations are defined to be the ones that give the maximum lower bound. We show how submodular relaxations can efficiently be constructed in order to compute the generalized roof dual bound for general cubic and quartic pseudo-boolean functions. Further, we prove that important properties such as persistency still hold, which allows us to determine optimal values for some of the variables. From a practical point of view, we experimentally demonstrate that the technique outperforms the state of the art for a wide range of applications, both in terms of lower bounds and in the number of assigned variables

    Mesh Types for Curvature Regularization

    Get PDF
    Length and area regularization are commonplace for inverse problems today. It has however turned out to be much more difficult to incorporate a curvature prior. In this paper we propose two improvements to a recently proposed framework based on global optimization. The mesh geometry is analyzed both from a theoretical and experimental viewpoint and hexagonal meshes are shown to be superior. Our second contribution is that we generalize the framework to handle mean curvature regularization for 3D surface completion and segmentation

    First-order Linear Programming in a Column Generation Based Heuristic Approach to the Nurse Rostering Problem

    Get PDF
    A heuristic method based on column generation is presented for the nurse rostering problem. The method differs significantly from an exact column generation approach or a branch and price algorithm because it performs an incomplete search which quickly produces good solutions but does not provide valid lower bounds. It is effective on large instances for which it has produced best known solutions on benchmark data instances. Several innovations were required to produce solutions for the largest instances within acceptable computation times. These include using a fast first-order linear programming solver based on the work of Chambolle and Pock to approximately solve the restricted master problem. A low-accuracy but fast, first-order linear programming method is shown to be an effective option for this master problem. The pricing problem is modelled as a resource constrained shortest path problem with a two-phase dynamic programming method. The model requires only two resources. This enables it to be solved efficiently. A commercial integer programming solver is also tested on the instances. The commercial solver was unable to produce solutions on the largest instances whereas the heuristic method was able to. It is also compared against the state-of-the-art, previously published methods on these instances. Analysis of the branching strategy developed is presented to provide further insights. All the source code for the algorithms presented has been made available on-line for reproducibility of results and to assist other researchers

    Pseudo-Boolean Optimization: Theory and Applications in Vision

    No full text
    Many problems in computer vision, such as stereo, segmentation and denoising can be formulated as pseudo-boolean optimization problems. Over the last decade, graphs cuts have become a standard tool for solving such problems. The last couple of years have seen a great advancement in the methods used to minimize pseudo-boolean functions of higher order than quadratic. In this paper, we give an overview of how one can optimize higher-order functions via generalized roof duality and how it can be applied to problems in image analysis and vision

    Joint Random Sample Consensus and Multiple Motion Models for Robust Video Tracking

    No full text
    We present a novel method for tracking multiple objects in video captured by a non-stationary camera. For low quality video, RANSAC estimation fails when the number of good matches shrinks below the minimum required to estimate the motion model. This paper extends RANSAC in the following ways: (a) Allowing multiple models of different complexity to be chosen at random; (b) Introducing a conditional probability to measure the suitability of each transformation candidate, given the object locations in previous frames; (c) Determining the best suitable transformation by the number of consensus points, the probability and the model complexity. Our experimental results have shown that the proposed estimation method better handles video of low quality and that it is able to track deformable objects with pose changes, occlusions, motion blur and overlap. We also show that using multiple models of increasing complexity is more effective than just using RANSAC with the complex model only
    corecore